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Abstract 
Scientific computing has entered a new era of scale and sharing with the 

arrival of cyberinfrastructure facilities for computational experimentation.  
A key emerging concept is scientific workflows, which provide a 
declarative representation of complex scientific applications that can be 
automatically managed and executed in distributed shared resources.  In the 
coming decades, computational experimentation will push the boundaries 
of current cyberinfrastructure in terms of inter-disciplinary scope and 
integrative models of scientific phenomena under study.  This paper argues 
that knowledge-rich workflow environments will provide necessary 
capabilities for that vision by assisting scientists to validate and vet 
complex analysis processes and by automating important aspects of 
scientific exploration and discovery.  
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1 Introduction 

Computational experimentation is now a ubiquitous technique across science 
domains.  It encompasses all aspects of the scientific experimentation process including 
data analysis, simulation, hypothesis generation and hypothesis testing.  This has driven a 
tremendous investment in cyberinfrastructure [Atkins et al 03] designed to provide shared 
resources for large-scale computational science. Results from computational 
experimentation have an ever-increasing impact in scientific practice, producing 
significant advancements in almost every discipline [Washington et al 05; Nature 06; 
OCI 07].   

This paper argues that despite the clear impact of current cyberinfrastructure in 
science, there are severe limitations in terms of the breadth and scope that can be 
supported.  It introduces computational workflows as key artifacts to further 
computational science.  It presents current workflow systems and their capabilities to 
isolate scientists from execution details in complex distributed environments.  Workflow 
systems have significant benefits and are becoming common elements in 
cyberinfrastructure.  Looking forward, the paper discusses the need to assist scientists at a 
higher level that requires capturing and exploiting scientific knowledge about the 
software and data used in computational experimentation.  It presents current research in 
workflow systems that exploit this knowledge to automate complex validations and 
decision making on behalf of the scientist.  Finally, it presents five areas of future 
research where knowledge-rich workflow systems can provide significant added value to 
existing cyberinfrastructure capabilities for computational experimentation. 

2 Cyberinfrastructure for Scientific Research 

Cyberinfrastructure had its roots in the High Performance Computing community and 
large-scale scientific computing, where large data repositories and high-end computing 
facilities needed to reside at specific locations while being effectively accessible by 
remote users.  Cyberinfrastructure broadly construed includes not only data and 
computing facilities but also instruments, tools, and often the people involved in forming 
and using all this combined infrastructure [Atkins et al 03].  A variety of middleware 
software enables access and exploitation of these facilities, including remote access 
services, interface portals, and data and tool repositories.  Figure 1 illustrates at a very 
high level some of the common components in cyberinfrastructure. 

There is no question that cyberinfrastructure is enabling ever-more integrative and 
transformative science.  Today, many scientific collaborations exploit cyberinfrastructure 
to create sophisticated simulations for earthquakes (www.scec.org), to extract new results 
from astronomical or particle physics data  (www.ivoa.net, milkyway.cs.rpi.edu, 
www.ligo.caltech.edu), to study ecological and environmental change (www.neoninc.org, 
www.oceanleadership.org), and to conduct biomedical research (www.birn.org, 
cabig.nci.nih.gov) among many others. Visionary roadmaps in almost every scientific 
discipline build on existing cyberinfrastructure to include increasing levels of automation 
and support for scientific research [Washington et al 05; Nature 06; OCI 07]. 
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Figure 1.  Common Components in Current Cyberinfrastructure Environments.  

 

Current cyberinfrastructure has proven effective to tackle two major challenges: scale 
and distributed sharing.  In terms of scale, it enables computations that are beyond 
terascale and into petascale arena, soon to be in exascale levels.  In terms of distributed 
sharing, the collaborations just mentioned attest to community-wide sharing and access of 
varied resources including data, instruments, computation, and storage.   

There are some important questions though that have been recently brought up by the 
research community in terms of effective exploitation and use of cyberinfrastructure. 

The National Science Foundation’s Cyberinfrastructure Council released the NSF 
Cyberinfrastructure Vision for 21st Century Discovery in March 2007 [OCI 07], which 
included the following observation: 

“While hardware performance has been growing exponentially – with gate 
density doubling every 18 months, storage capacity every 12 months, and network 
capability every 9 months – it has become clear that increasingly capable 
hardware is not the only requirement for computation-enabled discovery.”  

 -- NSF Cyberinfrastructure Vision for 21st Century Discovery, March 2007 
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This is indeed a key question.  Given the ever-increasing availability of 
computational resources and their effective integration into grids and collaboratories, 
there does not seem to be a corresponding acceleration in the pace of scientific advances.  
The document went on to state five major challenge areas: cyberinfrastructure planning 
and sustainment, data and visualization, virtual organizations, and learning and workforce 
development.  All five areas are clearly important and deserve major investments.  
Interestingly, an alternative perspective was put forward by another NSF report [Deelman 
and Gil 06]: 

“A key motivating question posed by domain scientists was: Given the 
exponential growth in computing, sensors, data storage, network, and other 
performance elements, why is the growth of scientific data analysis and 
understanding not proportional?  

There was a broad consensus in the group that in the scientific community there 
is a perceived importance of workflows in accelerating the pace of scientific 
discoveries. Today, complex scientific analyses increasingly require tremendous 
amounts of human effort and manual coordination. Data is growing exponentially, 
but the number of scientists is roughly constant. Thus researchers need 
exponentially more effective tools to aid in their work, if they are not to be 
inundated in data and associated tasks. Workflow environments that support and 
improve the scientific process at all levels are crucial if we are to sustain the 
current rapid growth rate in data and processing.” 

-- NSF Workshop on Challenges of Scientific Workflows, October 2006 
 
The argument is that capturing scientific analyses explicitly in declarative data 

structures known as workflows will enable the development of new aids to scientists for 
coping with the scale of the new computational environments. Workflows represent 
complex compositions of software components and the dataflow among them.  Workflow 
systems can then support scientists by automating low-level aspects of the process, 
providing detailed records of each analysis and its products, and enabling rapid reuse of 
software compositions.  Perhaps a more pressing need in current cyberinfrastructure that 
was raised in that report results from a perceived threat to the scientific method in 
research involving complex computations: 

 “An important requirement is reproducibility of scientific analyses and 
processes. This requirement is at the core of the scientific method, in that it enables 
scientists to evaluate the validity of each other’s hypothesis and provides the basis 
for establishing known truths. Reproducibility requires rich provenance 
information, so that researchers can repeat techniques and analysis methods to 
obtain scientifically similar results. Today, reproducibility is virtually impossible 
for complex scientific applications. First, because so many scientists are involved, 
the provenance records are highly fragmented, and in practice they are reflected in 
a variety of elements including emails, Wiki entries, database queries, journal 
references, codes (including compiler options), and others. All this information, 
often stored in a variety of locations and in a variety of forms, needs to be 
appropriately indexed and made available for referencing. Without tracking and 
integrating these crucial bits of information together with the analysis results, 
reproducibility can be largely impractical, and more likely impossible, for many 
important discoveries involving complex computations.” 

-- NSF Workshop on Challenges of Scientific Workflows, October 2006 
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Capturing the scientific analysis process in a declarative manner so that they can be 

easily reproduced by other groups or replicated on other datasets, also leads us into 
looking at workflows as an important and missing element in cyberinfrastructure. 

The next section introduces workflows, the capabilities that workflow systems are 
already contributing to scientific computing, and the benefits that result from using 
workflow environments in science projects. 

3 Workflows and Workflow Systems 

Scientific applications can be very complex as software artifacts.  They may contain a 
diverse amalgam of legacy codes, compute-intensive parallel codes, data conversion 
routines, and remote data extraction and preparation. These individual codes are often 
stitched together using scripting languages that specify the data and software to be 
executed, and orchestrate the allocation of computing resources and the movement of 
data across locations.  To manage a particular set of codes, a number of interdependent 
scripts may be used.  Scripted scientific applications are common today in 
cyberinfrastructure environments. 

Although scripted applications provide an approach to specifying and managing 
computations, there are major drawbacks to their adoption to manage complex scientific 
software.  First, any modifications are costly and error prone.  Small routine changes such 
as adding a new code or a new version of an existing code requires walking through the 
scripts manually and making changes where appropriate. Adding new requirements could 
require major changes to a significant portion of the scripts.  Second, they require a 
significant amount of human intervention to specify ad-hoc data and execution 
management.  Although cyberinfrastructure services may be available to determine 
available execution and storage resource, they only facilitate the task because the scripts 
must still manage the resource allocation and data location specifications.  Third, any 
execution failures require manual intervention for recovery and finding a good point to 
relaunch the script without repeating expensive computations that were successful.  
Fourth, the scripts must be undergo significant changes to run the computations using a 
different set of hosts or datasets.  Fifth, these scripts typically include a significant 
amount of code to assemble and record metadata and provenance information about the 
results of the computations.  This code is also error-prone, costly, and hard to eveolve.  
Last but not least, scripting languages are programming languages and as a result are 
inaccessible to any scientists without computing background.  Given that a major aspect 
of scientific research is the assembly of scientific processes, the fact that scientists cannot 
assemble or modify the applications themselves results in a significant bottleneck.  All 
these reasons point to the need for better management of complex scientific computations 
than the commonly used approach of relying on scripting languages. 

Workflows have emerged as a useful paradigm to describe, manage, and share 
complex scientific analyses [Taylor et al 07a; Gil et al 07b; Deelman and Gil 06]. 
Workflows represent declaratively the components or codes that need to be executed in a 
complex application, as well as the data dependencies among those components.  
Workflows have been used for several decades not to express computations but to 
represent complex processes in human organizations [Malone et al 03; Curtis et al 92] 
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that reflect tasks and the flow of information among them, as well as people and 
resources involved throughout.  Here we refer to workflows instead as compositions of 
computational steps, although one can envision workflows for science applications that 
combine manual and computational steps.  

Some scientific workflows represent compositions of remote services.  They specify 
how to use services provided by third parties to accomplish an overall task. Other 
scientific workflows combine software components as codes that can be submitted for 
execution to different remote resources.  Some of these codes can be legacy applications, 
and the workflow expresses how to combine their results into a new end-to-end 
application. 

Workflow systems exploit workflow representations in order to manage the 
elaboration and execution of workflows in a distributed environment.  Several workflow 
systems have been developed for a variety of applications, including Askalon [Wieczorek 
et al 05], Cactus [Goodale 07], Kepler/PtolemyII [Ludaescher et al 06], Pegasus/Wings 
[Deelman et al 05; Deelman et al 03], Taverna/myGrid [Goble et al 03; Oinn et al 06; 
Hull et al 06], Triana [Taylor et al 07b], and Wings [Kim et al 08].  Surveys and 
overviews of current workflow systems are provided in [Yi and Buyya 05; Taylor et al 
07a].  In this paper we will use Pegasus, Taverna, and Wings to illustrate the capabilities 
and benefits of workflow systems. 

Pegasus manages mapping and execution of computational workflows in distributed 
shared resources that may be highly heterogeneous [Deelman et al 05; Deelman et al 03].  
Mapping involves selecting execution resources for each workflow task.  Execution 
management includes handling new data products and recovery from execution failures.  
To map workflow tasks, Pegasus uses descriptions of the execution requirements of each 
of the codes, and finds available hosts in the execution environment that satisfy those 
requirements.  It takes into account queuing times in selecting among suitable resources, 
and clusters together workflow tasks into a single queued job to improve execution 
performance.  Pegasus also manages new data generated by the workflow, moving it to 
the location of the next workflow task that will use it and registering results in data 
catalogs.  To manage very large datasets reliably and efficiently, it uses grid services for 
data transfer and for finding alternative locations of data replicas.  Pegasus includes 
several algorithms for optimizing the selection of execution resources not only based on 
task performance but also on minimizing queuing delays and data movement times.  
Another optimization strategy is the reduction of computations by eliminating workflow 
tasks that generate data that already exists and can be reused, perhaps generated by the 
prior execution of workflows.  Pegasus relies on Condor DAGman and Condor-G [Thain 
et al 05] to submit jobs in the order specified by the workflow dataflow.  Pegasus has also 
facilities to recover from execution failures that may occur due to bugs in the application 
codes, memory faults in the execution host, network failures, and other unexpected errors 
that are commonplace in distributed architectures.  When a computation fails, it is retried 
a few times and then submitted to an alternative resource.  If nothing works, DAGman 
returns a rescue graph that is used by Pegasus to figure out what portions of the 
computations to resume.   

Pegasus is used in several cyberinfrastructure projects.  In an application of the 
Southern California Earthquake Center (www.scec.org/cme) for seismic hazard analysis, 
Pegasus mapped workflows to heterogeneous shared cyberinfrastructure resources in 
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NSF’s TeraGrid (www.teragrid.org), managing more than 260,000 tasks for a total of 1.8 
CPU years of computation that generated 20TB of data in 23 days [Deelman et a 06].  
Montage is perhaps the most successful deployment of Pegasus, where it is used by a 
broad community of astronomers [Berriman et al 06; Katz et al 05].  Montage is part of 
the National Virtual Observatory (www.nvo.org) and is used to create science-grade 
mosaics of the sky from multiple images that may have different characteristics (eg, 
different coordinate systems, projection, etc).  Montage includes several application 
codes for re-projection into common scale and coordinates, modeling background 
radiation to minimize inter-radiation differences, rectification into common flux scale, 
and co-addition into a final mosaic.  Montage can process data using two alternative 
approaches:  one is a system that parallelizes computations implemented as a message 
passing interface (MPI) code that can be executed in a cluster, and the other uses Pegasus 
workflows to parallelize computations and execute them on distributed resources.  
Detailed comparisons showed that there is no notable difference in the execution 
performance of these two approaches, and that Pegasus has the additional advantages of 
fault tolerance and computation management [Katz et al 05].  Pegasus improved runtime 
by 90% over the original Montage design through automatic workflow restructuring and 
minimizing execution overhead [Berriman et al 06]. 

Taverna [Goble et al 03; Oinn et al 06; Hull et al 06] focuses on workflows for 
bioinformatics applications.  In this area, there are thousands of services that are made 
available over the network for access by a wide community of scientists.  The mechanism 
to access the services varies, some are web services, others are REST services, and others 
are simply legacy command line applications.  Taverna provides a framework to integrate 
these components and isolates users from this diversity of access mechanisms.  Taverna 
workflows are composed from these services, and are cast in a simple and intuitive 
workflow language. An important challenge for integrating these services is that they are 
advertised with simple descriptions that provide no semantics as to what inputs they 
expect and what outputs they produce.  To address this, workflows may include small 
steps or shims for data format conversion.  To execute a workflow, Taverna uses the 
FreeFluo engine to add the specific invocation details for each of the services.  FreeFluo 
also includes mechanisms for failure recovery, so that when a service fails it looks for an 
alternative location for the same service and retries the invocation there.  Taverna 
includes more than a thousand diverse services such as the European Molecular Biology 
Open Source Software Suite (EMBOSS), BioMOBY, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and the National Center for Biotechnology Information (NCBI), 
totaling more than 3,000 services in 2006 [Hull et al 06].  Taverna workflow applications 
have executions that range from a few seconds to a few days, and do not require handling 
large-scale datasets.  A recent result obtained with Taverna is the identification of a 
candidate gene thought to be responsible for resistance to African tripanosomiasis [Fisher 
et al 07].  The workflow looks for correlations between phenotype in microarray data to 
Quantitative Trait Loci (QTL) genotype data.  [Fisher et al 07] argues that when this kind 
of correlation is done manually there is no guarantee of a systematic consideration of 
hypotheses due to several features: 1) eliminated datasets prematurely to reduce 
complexity, 2) hypothesis-driven research dominates rather than complements data-drive 
research, 3) user bias in pursuing hypotheses, 4) re-analysis of data is hard due to changes 
in software interfaces and data availability, 5) errors due to all the above.  The workflow 
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provides a mechanism to systematically and correctly explore variations of parameter 
settings.  In addition, it is possible to re-analyze data since the provenance of any result is 
made available and the workflows are easily re-executed. 

These results illustrate key benefits of workflow systems: 
• Automation of workflow execution: Data management and execution are 

automatically handled, including mechanisms for failure recovery and repair.  
Failures during execution can be handled automatically since the workflow 
system can figure out what computations remain to be done and where prior 
computation results reside in the execution environment.  Executing the same 
workflow in a new execution environment becomes trivial, as it is a simple matter 
of assigning computations to the new resources and this is done automatically. 

• Managing distributed computations:  Whether submitting computing jobs to 
remote hosts or invoking third party services, workflows manage computations in 
a distributed environment.  Since failures are commonplace and failure recovery 
can be complex in distributed systems, manual management of distributed 
applications becomes impractical and is better handled by workflow systems. 

• Managing parallel computations:  Scientific applications often benefit from 
parallelism, whether to process large datasets efficiently by farming out subsets to 
different resources or by accessing distributed services concurrently.  Workflow 
structures for scientific applications represent parallelism in the dataflow graph 
and their efficient concurrent execution is automatically managed. 

• Systematic exploration of the parameter space:  Application parameters can be 
explicitly indicated in the workflow.  This enables the systematic assignment of 
values to explore the space of possible parameter combinations.   

• Managing the evolution of an application:  Workflow applications are modular 
by design, and as a result the evolution of the application is more manageable.  
Updating individual components either has little impact in the overall workflow 
or the impact is localized and amounts to updates to the dataflow structure.  With 
scripts, the overall code has to be changed particularly the metadata propagation, 
no matter how small the change to an individual component. 

• Provenance recording: Metadata and provenance information are automatically 
recorded by the workflow system.  When expressing a new application as a 
workflow, no special code has to be written to record provenance. 

• Low-cost high-fidelity reproducibility: Workflows provide explicit 
representations of the computational processes used to derive new data.  When a 
significant result is achieved, there is a detailed provenance trail of what 
processes were executed and how parameter values were set to obtain those 
results.  Every detail of the provenance of new data products can be recorded and 
supplied by the workflow system. Workflows can be easily re-executed to 
reproduce results, and can be easily applied to new datasets to replicate results in 
alternative settings.   When new datasets become available in a shared 
environment, it is easier to replicate a computational experiment with the new 
data. 
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Figure 2.  Workflow Systems as Components of Cyberinfrastructure 

 

Workflow systems have already demonstrated the benefits of automatic management 
of computations.  If adopted broadly in cyberinfrastructure environments they have the 
potential to greatly streamline the productivity in computational experimentation 
processes and accelerate the pace of scientific research, since they can result in 
significant savings in terms of human time and effort spent in computational experiments. 
Perhaps more importantly, workflow systems could have a profound impact in 
reproducibility of computational experiments.  Figure 2 shows workflow systems 
augmenting the common components of cyberinfrastructure. 

The next section argues that workflows will be indispensable to support new 
capabilities envisioned in scientific roadmaps being laid out in many sciences, and that 
they open the door to new possibilities in cyberinfrastructure to support scientific 
discovery.  

4 Towards Large-Scope Science: The Need for a Knowledge 
Level View 

The coming decades will present great opportunities for scientific discovery on 
questions encompassing complex natural phenomena that science was not even in a 
position to pose until now. Of paramount importance to pursuing such questions is 
breaking the barriers across insular research disciplines to enable increasingly integrative 
scientific pursuit [Washington et al 05].  From neuroscience to cancer research, any 
aspect of biomedical research is increasingly viewed as a “system of systems” science 
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that requires integration of data and models across a variety of disciplines [Nature 06].  
Physician’s observations and data must be integrated with models at the cellular level, the 
organ level, and the system (e.g., circulatory and nervous systems) level.  Environmental 
science is another example of the study of a complex system of systems requiring 
interdisciplinary integration.  The chair of the Science Council of the NSF’s 30-year old 
US Long Term Ecological Research (LTER) network describes the vision for 
environmental observatories that produce data that can be integrated and analyzed across 
perspectives and disciplines:  

“The importance of self-organizing networks of environmental scientists for 
identifying and addressing the non-linear and cross-scale phenomena that underlie 
and, in some cases, define global environmental change today. […] With the 
emergence of new complementary networks, such as the National Ecological 
Observatory Network (NEON), the Global Lake Ecological Observatory Network 
(GLEON), the Water and Environmental Systems Network (WATERS), and the 
Oceans Observatory Initiative (OOI), comes the potential for research synergies 
hardly imaginable even 15 years ago.  Equal in importance to collaborations across 
physical networks are collaborations across disciplinary networks.  If there is one 
lesson to be learned […] it is the crucial importance of engaging with other 
disciplines – and especially with the social and behavioral sciences – to address 
today’s big ecological questions.” 

-- [Robertson 08] 
 
This cross-disciplinary view on data analysis may be best described as large-scope 

science: 
 “Whereas large-scale means increasing the resolution of the solution to a fixed 

physical model problem, large-scope means increasing the physical complexity of 
the model itself.  Increasing the scope involves adding more physical realism to the 
simulation, making the actual code more complex and heterogeneous, while 
keeping the resolution more or less constant.” 

-- [Sameh et al 96] 
 

This emphasis on large-scope science is in contrast with large-scale science, which 
has been a major driver to date of cyberinfrastructure research.  Large-sale science can be 
pursued through increasingly more powerful networks and machines, parallel distributed 
computing techniques, and federated services. But although in fact current 
cyberinfrastructure manages complexity and heterogeneity, its focus is at the level of 
hardware resources and services.  The complexity and heterogeneity required for large-
scope science speaks of a new realm that is not addressed by current cyberinfrastructure. 
The new challenges that we face are concerned with the diversity of models and the 
complexity of the methods involved in cross-disciplinary research.  There are essentially 
two levels of concern here: one about how the applications are integrated and another 
about how the resources are integrated.  It is a key division between the behaviors desired 
and mechanisms used to obtain them.  The behaviors depend on the knowledge available 
in the system to perform a task.  The mechanisms are important in that they implement 
those behaviors, but they are irrelevant to the task of the system in the sense that the 
choice of mechanism does not affect the system’s behavior.   
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This distinction is crisply expressed in terms of the knowledge level versus the 
symbol level in artificial intelligence: 

“The Knowledge Level Hypothesis:  There exists a distinct computer systems level 
which is characterized by knowledge as the medium and the principle of rationality 
as the law of behavior.” 

-- [Newell 1982] 

The knowledge level of an intelligent system is concerned with any characterization 
of that system in terms of its response to requests or goals and what knowledge it uses to 
solve them.  In contrast, a symbol level is concerned with the implementation of the 
knowledge and the reasoning mechanisms that are used to exploit it.  For example, a 
symbol-level description would characterize a system in terms of whether it uses a 
genetic algorithm, a neural network, or a rule base.  An example of a knowledge-level 
description would describe an autonomous vehicle in terms of its ability to pursue 
standing goals of going to a destination, to incorporate opportunistic goals when a lane 
opens, and to defend itself from other drivers through fast reactive behaviors. 

If we take this distinction to a workflow environment, we can see that the capabilities 
of workflow systems to map and execute workflows are concerned with the architecture 
at the symbol level.  The scale and sharing are enabled by the symbol-level architecture 
through infrastructure services and resources.  The symbol level is concerned with 
carrying out the tasks specified in a given workflow.  In contrast, the knowledge level of 
a workflow system would be concerned with the kinds of tasks that it is able to 
accomplish for a scientist.  This suggests a level of workflow descriptions and 
capabilities that affect what scientific tasks the workflow system can accomplish.  This 
level would be concerned with what scientific tasks it can undertake, what workflows are 
selected for a task, what workflows are available in the system, and what their coverage 
is with respect to a set of tasks.  The more knowledge, the more kinds of tasks the system 
can undertake.  More knowledge about how to use and integrate workflows will result in 
improved behavior of the system in terms of solving more tasks and being capable of 
producing new kinds of results. 

Thinking about workflow systems as repositories of scientific knowledge, we can 
then explore techniques for managing the heterogeneity of that knowledge and the 
capabilities required to perform complex tasks using that knowledge. 

5 Workflows at the Knowledge Level 

What would it mean to describe workflow systems at the knowledge level?  What 
kinds of behaviors should we expect workflow systems to accomplish by using that 
knowledge?  Table 1 shows a set of abstraction layers in the specification of workflows, 
from more abstract to more specific.  A more abstract layer can be implemented by using 
the information contained on the layer below it.  Typically, workflows specify the 
datasets and the computational steps (services or codes) that are to be used.  Those 
correspond to layers 2 (data) and 1 (computation), which specify the data that will be 
processed and when it will be processed. Layer 1 workflows are then mapped to 
execution resources, resulting in layer 0 workflows that are directly executable in the 
execution environment. Layer 0 workflows correspond to scripted applications, and layer 
1 and layer 2 workflows correspond to the workflows discussed in Section 3.   
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Layer of abstraction Information specified  What/When/Who/How/Where 
4) Result Desired data products What result is desired 
3) Method High-level processes How will data be processed 
2) Data Input datasets Who (what data) will be processed 
1) Computation Specific computational steps When will data be processed 
0) Execution Specify execution resources Where to execute the computations and 

where to find data 

Table 1: Layers of Abstraction in Workflow Descriptions. 

Going up the layers of abstraction in Table 1, a workflow can be described not by the 
specific computations but by a sketch the process by specifying abstract classes of 
computations and by skipping some of the workflow steps to be performed if they are not 
central to the experiment. For example, a workflow could indicate that an initial dataset is 
first processed with a normalizing step followed by a discretization step and then a 
clustering step without specifying which algorithms and implementations are to be used.  
These workflows are layer 3 workflows that specify how data is to be processed but not 
specifically when each operation will be carried out relative to others.  At a higher layer 
of abstraction, only a description of the desired results would be specified.   For example, 
the desire to obtain clusters of temporal sightings of bird observation data. At the highest 
layer of abstraction, only questions are posed and no details are provided about how to 
find answers to the questions in terms of workflows to be executed or data to be 
generated.  For example, what would be interesting patterns for bird observation data.  

Table 2 relates these layers of abstraction to the knowledge level and the symbol 
level.  We should aim to develop systems that can take on workflows and requests at the 
highest layers of abstraction from users, and then have the systems automate the 
elaboration of the workflow into the lower layers of abstraction and their corresponding 
details.  The higher the abstraction layer, the closer the workflow representation is to how 
a scientist may view the process or the request that triggers the process.   

The highest layers of abstraction are centered around what behaviors the system can 
exhibit, and the knowledge required to accomplish those behaviors.  Knowledge will 
include constraints that must be satisfied by a workflow in order for it to be valid, 
strategies to complete or specialize a high-level workflow, effects-centered knowledge to 
accomplish a given experimental goal, and descriptions of data and their characteristics.  
Techniques would include constraint reasoning, hierarchical decomposition and 
abstraction reasoning, automated search, heuristics that focus exploration of possibilities, 
and ontology-based reasoning of classes of data and computations. 

In considering the knowledge level, we leave behind the realm of parallel 
programming and distributed systems.  We enter the realm of artificial intelligence as an 
enabler of significant new capabilities in workflow systems. Artificial intelligence 
techniques can play an important role to represent complex scientific knowledge, to 
automate processes involved in scientific discovery, and to support scientists to manage 
the complexity of the hypothesis space.  The next section illustrates some of these 
techniques for workflow generation assuming initial descriptions of user requests at the 
highest levels of abstraction. 
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Level of system 
description 

Abstraction 
Layer 

What/When/Who/How/Where 

5) Question What would be an interesting result 
4) Result What result is desired 
3) Method How will data be processed 

Knowledge level 

2) Data Who (what data) will be processed 
1) Computation When will data be processed Symbol level 
0) Execution Where to execute the computations and where to 

find data 

Table 2: The Knowledge and Symbol Levels in Workflow Descriptions. 

6 Reasoning with Workflows at the Knowledge Level  
Armed with knowledge of what workflow components do, what the properties of the 

datasets are, and what experiment design entails, workflow systems can assist scientists 
by exploiting that knowledge to make automatically domain-relevant decisions. 

Wings is a workflow system that starts with high-level user descriptions of desired 
analyses and uses knowledge about components, data, and workflows to automatically 
elaborate, validate, and generate workflows to the level of detail that Pegasus needs to 
map and execute them [Gil et al forthcoming; Kim et al 08; Gil et al 07a; Kim et al 06].  
Wings assumes that all workflow components, data, and their properties can be organized 
in hierarchies, and that they can have associated constraints regarding their proper use.  It 
allows the expression of high-level workflow templates that can be reused for different 
datasets, and represents constraints among datasets and components at the workflow 
level.  Wings represents this knowledge using ontologies and rules, and uses the W3C 
Web Ontology Language (OWL) (www.w3.org/2004/OWL) and associated reasoners as 
the basis for workflow representation.  Workflows can be expressed at a high level with 
component classes, and express iterations in a compact manner.  Wings uses OWL 
reasoners to find out whether a component can be used to process a dataset with given 
properties, to find out whether a component can generate datasets with certain properties, 
and to check if data can flow between two components based on their respective 
constraints.  Wings issues many such queries to the reasoners as it assists the user to 
generate workflows.  If a scientist is creating a workflow interactively, Wings checks that 
all the dataflow is consistent with the component constraints.  When it is not, it makes 
suggestions regarding what other components can be substituted to achieve a similar 
function while respecting the constraints [Kim et al 04].  When input data is selected, it 
checks that its properties comply with the requirements of the components that will 
process the data.  Once a workflow is specified, Wings elaborates it to generate a 
complete description of the workflow in a format that can be submitted to Pegasus, which 
includes command line invocations of each executable code and logical names for all the 
datasets in the workflow.   

In addition to workflow validation, Wings can automatically select components and 
datasets for the scientist.  Wings can select datasets based on the constraints expressed in 
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the workflow, and if several datasets satisfy the constraints then several workflow options 
will be generated.  When a component class is used as a step of the workflow, Wings will 
choose specific components based on the constraints that apply to that step in the 
workflow.  When several components and datasets satisfy the constraints in the 
workflow, it will generate all corresponding workflow candidates and execute the top-k 
workflows ranked according to user-specified criteria (e.g., faster execution, higher 
accuracy, etc).  Wings can also automatically generate workflows based on descriptions 
of what data products are desired by a user.  Wings propagates the requirements on data 
products throughout the workflow using a backward projection [Gil et al forthcoming].  
This results on a set of constraints on the input datasets that are used to query data 
catalogs to find appropriate input data.  It then finds the properties of the input data found 
and propagates them using a forward projection that enables it to generate detailed 
descriptions of the new data products generated by the workflow [Kim et al 06; Gil et al 
forthcoming].  This is a very useful capability, as the system can register new datasets 
obtained through execution and annotate their metadata properties so they can be 
discovered and reused later to avoid repeating unnecessary and costly computations. 

For a seismic hazard analysis application of the Southern California Earthquake 
Center (http://www.scec.org/cme), Wings was used to expand a workflow template 
containing a dozen application codes, including MPI codes, into a workflow of more than 
8,000 computations [Gil et al 07a; Kim et al 06].  Pegasus expanded this workflow to add 
data movements and registrations for a total of 24,135 jobs.  The workflow processed an 
earthquake forecast model with thousands of possible fault ruptures for a total of 110,000 
input files, and run for 1.9 CPU years.  Wings generated provenance records for 100,000 
new data products.   

Taverna also uses knowledge-rich descriptions of components and workflows 
[Goderis et al 05a; Goderis et al 05b; Goderis et al 06].   It matches user requests with 
available workflows and services.  Users can specify the type of service they wish to use, 
or the type of workflow structure specified as a graph of services and their dataflow.  
Taverna uses semantic descriptions of services and workflows combined with graph 
matching algorithms to discovered appropriate workflows for the user. 

These results illustrate key additional benefits of adding a knowledge level to 
workflow systems: 

• Automation of workflow generation and of repetitive constraint checking 
tasks:  During the generation of even simple workflows, a generation algorithm 
can formulate hundreds of queries about components and dozens of queries to 
check constraints about datasets based on their use in the context of the workflow.  
Scientists should not need to check by hand the myriads of constraints about 
components and datasets that must be taken into account within an analysis.  The 
system can undertake these kinds of repetitive tasks because it has knowledge 
about experimental processes (workflows), models (workflow components), and 
data. 

• Systematic exploration of the experiment design space:  A workflow system 
can explore in a methodical and exhaustive manner all possible experimental 
settings for a workflow: all possible combinations of components, all possible 
relevant data, and all possible parameter settings.  Invalid combinations will be 
automatically (and correctly) ruled out as inconsistent within the context of the 
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workflow.  While at a lower layer of abstraction in the symbol level one could 
explore the space of different parameter settings, the knowledge level is needed to 
enable this systematic exploration in terms of all workflow configurations that use 
alternative components and data. 

• Validation of workflows:  Given a user-specified sketch of a workflow, the 
system can use its knowledge of components and data to ensure that the workflow 
is valid.  Components represent models or operations on data that are designed to 
work on certain kinds of data, and when composing these models together it is 
hard for scientists to have fresh in their mind all the constraints on all the models.  
Even when scientists are intimately familiar with the constraints on those models 
as published in the literature and code documentation, it is hard to keep track of 
all of them when the compositions are complex and when they evolve over time.   

• Automated generation of metadata for new data products:  Because the 
system has knowledge-level descriptions of the kinds of transformations 
performed on datasets, it can use these descriptions to qualify the properties of 
new data products.  At the symbol level, the description of new data products is 
limited to what software and input data were used as shown in the provenance 
records. 

• Guarantees of data pedigree:  The system can include knowledge about well-
formed widely accepted workflows that can be directly reused on new datasets. A 
scientific method that is well tested and widely accepted by a community can be 
captured in an earmarked workflow that can be referred to as a proof of pedigree 
of results obtained by it.  That is, when the provenance of new data products 
shows that they were obtained through a highly regarded workflow that serves a 
guarantee of the high quality of the process used to obtain them, or pedigree, of 
those new results.  This would bypass the current need to check how any 
surprising results are obtained, either when they look too good or when they look 
too routine, as the surprise is often times due to errors that lead to incorrect code 
selection or parameter settings.  These workflows provide a guarantee that any 
results obtained from those workflows comply with vetted methods and their 
requirements.  At the symbol level, the system can offer a provenance trail of how 
new results were obtained.  At the knowledge level, the system can offer a 
guarantee of trusted provenance or pedigree of the new results. 

• Correct reproducibility and reuse:  At the symbol level, workflows can be 
reused to reproduce results with new datasets.  However, at that level only syntax 
validity can be checked.  At the knowledge level, the constraints of the 
components and data of a workflow can be checked to ensure its correct reuse. 

Clearly the knowledge level has benefits that speak directly to large-scope science in 
terms of managing complexity and heterogeneity through automation of workflow tasks 
that are closer to the science realm than what was possible in the symbol level.  Note that 
these benefits are in addition to the benefits that we discussed for the symbol level of 
workflow systems architecture.   
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Figure 3.   Functions within a workflow system that form the knowledge level to 

determine behavior and the symbol level to provide mechanisms. 
 
There are many possibilities for the knowledge level once it is in place in a workflow 

system.  Here we discussed automatic generation and completion of workflows.  Other 
possibilities to improve automated workflow generation include hierarchical 
decomposition of tasks in a workflow, selection among software implementations of 
workflow components based on available execution resources, and dynamic selection of 
components interleaved with execution based on results obtained from execution of prior 
steps.   

Figure 3 summarizes the functions within a workflow system discussed here 
contrasting the knowledge level with the symbol level.   

7 Looking to the Future: From Data to Knowledge to 
Discoveries 

We discussed many additional benefits of having a knowledge level in the 
architecture of workflow systems.  The discussion centered on benefits arising from the 
ability to automate the generation and validation of workflows from high-level requests.  
This section argues that the potential for the knowledge level is enormous in terms of 
significant paradigm shifts in the way computational experimentation is practiced and 
outlines areas for future investigation.  Figure 4 illustrates the potential in terms of 
significant new cyberinfrastructure capabilities. 
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Figure 4.   A View on Future Cyberinfrastructure Components 

 

7.1 Workflow as Scientific Currency 
Workflows are valuable in their own right as scientific research products.  Workflows 

should be the objects of scientific discourse, and their description should be used to 
capture formally a novel method or analysis process discovered through careful design 
and testing.  Workflow design is a contribution to science in its own right, in fact new 
methods are publishable in scientific articles and those articles could be accompanied by 
the formal workflow description as supplementary information to the article that 
describes the workflow in textual form.  For workflows to become scientific currency, 
workflow descriptions need to become closer to the knowledge level and therefore closer 
to representing scientific concerns rather than low-level system concerns.   

Workflows should become currency of scientific exchanges.  Where today we see 
sharing of data across entire communities, tomorrow we should see workflows being 
published and exchanged across research groups.  Where today we see citations to papers 
that explain the scientific method used to obtain a result, tomorrow we should see 
citations of workflows that should be downloadable and inspectable and reproducible at 
minimal cost.  Where today we see common use of portals to access datasets, tomorrow 
we should see the common use of workflow libraries to access and to contribute 
workflows.  

Workflows could be shared as computational objects much like data is shared today 
across scientific communities in cyberinfrastructure [Goble and De Roure 07; 
Sonnenburg et al 07].  Unlike data, workflows can evolve over time as new or faster 
methods are discovered.  A workflow may be superseded by a new one, and if so any 
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results obtained with the former would be worth revisiting using the new workflow.  A 
user community could drift from preferring the use of a workflow template to a new 
workflow that represents an improved or newly created method.  It will be important to 
manage the evolution of workflows as the experimental methods that they represent 
evolve while being used by a community of scientists. 

A related and important area of future research building on the knowledge level is 
learning from workflow usage in order to improve and adapt the behavior of the 
workflow system.  Rather than expecting users to define reusable templates by hand, a 
system could learn reusable workflow templates from observing regularities and 
generalizing traces of workflows executed by a community of users.  A workflow system 
could also learn component and data selection criteria based on what workflows are 
found most useful by a user community.  Workflow patterns that may appear repeatedly 
in the context of certain types of data analysis could be discovered autonomously by the 
system by observing usage of workflows over time. One could envision that the learned 
workflows could ultimately result in new discoveries made by the workflow system, and 
could be scientific contributions made by the system in its own right.   

7.2 Workflows for Cross-Disciplinary Integrative Research 
Large-scope science requires managing heterogeneity across disciplines.  Consider 

the environmental observatories mentioned in Section 4.  There is a clear cross-
disciplinary data analysis activity expected of the various scientific communities involved 
in analyzing the data collected.  For example, sensor data regarding weather trends will 
need to be coupled with ornithology migration data to discover significant correlations 
between environmental conditions and animal behavior.  An ornithologist would very 
likely not be familiar enough with weather analysis methods to set up valid workflows.  
However, the system could act as an expert weather analyst and assist the ornithologist 
by automatically generating workflows from given general questions about general 
weather patterns known to ornithologists.   Although this is an example of chaining 
workflows together, one could imagine arbitrary interweaving of workflows created by 
researchers in different disciplines into a complex and heterogeneous cross-disciplinary 
analysis.   

The existence of a knowledge level to reason about behaviors within disciplines 
would make it possible to envision systems that will reason about behaviors that cross-
disciplinary boundaries.  These are areas of the research space that will very likely lead to 
fundamentally new discoveries.  These are also areas of research that are precisely the 
motivation of developing cross-disciplinary research programs such as the environmental 
observatories in the first place. 

7.3 Workflows for Education and Broadening Participation in Science 
Science must be an ecosystem in order to foster discoveries and innovation across the 

board.  Researchers and educators at all levels are needed to push science forward, from 
expert Nobel-quality talent to the most inexperienced undergraduate research assistants, 
from faculty retreats to facilitate inter-disciplinary collaborations to high-school teachers 
that form future generations of scientists through hands-on involvement in science, from 
the most prestigious university departments to the humblest of corporate research 
laboratories and startups.  Workflows have enormous potential as a paradigm to facilitate 
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training across this science research ecosystem.  Workflows can illustrate methods, data 
usage, results, and processes in a hands-on manner to complement the general or 
theoretical descriptions found in articles and textbooks.  The knowledge-level will enable 
the presentation of workflows in domain-relevant terms found in those articles and books 
that is not possible with the symbol level alone. 

Just as important as supporting the training of future generations of scientists is the 
support to train seasoned scientists on new techniques and methods or new areas of 
research.  The need for cross-disciplinary training is already commonplace in any 
scientific practice.  Cross-disciplinary training is already costly to individuals, and there 
is very little technology for hands-on practice of another science’s methods and analyses 
processes.   

One could imagine ultimately opening up science to a much broader population than 
our current scientist and student pool.  Pioneering efforts to volunteer compute cycles 
have been very successful (setiathome.berkeley.edu, milkyway.cs.rpi.edu).  There are 
already significant projects that rely on citizen scientists to collect data [Bhattacharjee 05; 
McCaffrey 05; Raloff 07; Cohn 08] spanning astronomy (www.galaxyzoo.org), 
ornithology (www.ebird.org), botany (www.windows.ucar.edu/citizen_science/budburst), 
and weather (wxqa.com). A workflow system could autonomously create combinations 
of workflows and data that are separately contributed to the system and that may be 
worth analyzing. Citizen scientists could volunteer their skills to accomplish real 
scientific analysis tasks by being trained by or assisted by underlying workflow systems. 

7.4 Workflows for Systematic Exploration and Discovery 
Today’s paradigm for computational experimentation is driven by the user’s 

initiative, design choices, and experiential biases.  Scientists decide what software to run 
and with what settings, what data to analyze and with what granularity, and what aspects 
of the hypothesis space to focus on.  Scientists have unquestionable expertise to drive the 
process, but there are limits to the effort, reliability, and coverage of any human-centered 
task of the complexity required in current and future scientific endeavors.  Humans 
should not be the bottleneck to scientific advances when routine tasks can be automated.  
We have already seen the benefits of assistance and automation through workflows, but 
much more can be done.  

Workflows can be used to automate processes for heuristic discovery and pattern 
detection.  Through systematic hypothesis generation and elimination, workflows can 
explore ever more complex phenomena.  Scientists today rely on visualizations to 
understand complex datasets, but there is a limit to what can be visualized for complex 
phenomena.   Pattern detection techniques can search datasets to match patterns (or 
pattern types) that describe complex relationships across variables.  Heuristic-driven 
search can automatically discover new correlations in datasets.  The process would still 
be driven by the scientist and still be human centered, in that the scientist can provide a 
battery of potential patterns to seek or heuristics to follow.  There are already many 
examples in the AI literature of scientific discoveries driven by heuristic and pattern 
search [Simon 69; Simon and Kotovsky 63; Langley et al 87; Kulkarni and Simon 88; 
Okada and Simon 95].  Workflows today include sometimes visualization steps that plow 
through very large datasets to highlight specific aspects.  Workflows for pattern detection 
and discovery should be developed to process large data sets and extract phenomena of 
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potential interest.  Knowledge level descriptions of the analysis processes are needed to 
enable the integration of pattern descriptions and heuristics at the appropriate level of the 
scientific domain. 

7.5 Workflows as Paradigm for “Research Cockpits” 
Today’s scientific environments contain shared distributed resources that are 

accessible through web portals.  Portals are user interfaces that act as a single point of 
access to data collections, application tools, services, and other resources.  Portals are 
customized to specific purposes or disciplines, and guide users to conduct pre-defined 
tasks through scripted interfaces.  Deviations from the pre-defined system behaviors are 
not supported.   

In coming years, new user interface paradigms will need to be developed for 
computational experimentation. The underlying system must be able to support flexible 
behaviors and be configurable by end users.  Scientists will conduct long-lasting 
activities, and the interfaces must be designed to track the information flow over time and 
to accommodate the dynamic evolution of such activities.  More importantly, the user 
interfaces must be designed to support collaboration not only among humans but between 
humans and the underlying system and the ongoing activities that must be accomplished 
jointly.   

Aircraft cockpits are a great analogy for the kind of user interface that will be 
required.  The organization of the tools and workspace must support collaboration among 
several humans (e.g., the pilot, the first officer, and the second officer) and the aircraft 
navigation system, showing how the humans and the aircraft manage the flow of 
information among them to jointly accomplish the mission [Hutchins 95a; Hutchins 95b; 
Hutchins and Klausen 96].  Cockpits organize information in a task-centered manner, 
enable several humans and the system to work as one cognitive unit, and facilitate 
steering of the mission by all participants.  The system can be asked to continue the 
course on automatic pilot, which is expected to be routine but may require minor 
adjustments.  But when a situation requires careful analysis, all participants collaborate 
and share information while working towards the joint goal of reaching the destination 
safely and in compliance with established rules. 

Workflows could enable “research cockpits” as a new interaction paradigm for 
scientists with underlying cyberinfrastructure.   Scientific questions will set the overall 
goals and mission for the system.  Along the way, any activities can be represented by 
workflows that will integrate any of the constraints (rules) to be respected.  Workflow 
systems could automate routine tasks, while collaborating with scientists in novel 
analyses and to convey key information when outcomes are unusual or unexpected.  
Knowledge-rich representations of tasks, information, delegation, intention, and scientific 
goals are needed to support rich interactions for collaboration and automation. 

8 Conclusions 
Workflows should become first-class citizens in science and cyberinfrastructure.  

They provide explicit representations of computational analyses and provenance 
information for new data.  Workflow systems today assist scientists by automating non-
experiment critical tasks, systematically exploring the hypothesis space, managing 
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parallelism and execution in distributed shared resources, and enabling low-cost 
reproducibility.  

Using semantic representations of workflows will have an empowering effect leveling 
terms of the scientific processes supported.  Today, semantic representations of scientific 
datasets are becoming more commonly used in cyberinfrastructure architectures to enable 
integration and reasoning over data. Similarly, knowledge-rich representations of 
workflows capture scientific principles and constraints that will enable a variety of 
artificial intelligence techniques to be brought to bear for validation, automation, 
hypothesis generation, and guarantees of data quality and pedigree. Knowledge-rich 
workflow systems open the doors to significant new capabilities for automated discovery, 
ever more integrative research that broadens the scope of scientific endeavors, education 
in science at all levels, and novel paradigms for interaction of scientists with 
cyberinfrastructure to fully exploit its capabilities. 

Workflows are a relatively new research area in computer science.  More extensive 
investments in this area stand to greatly benefit scientific computing.  Collaborative 
projects between computer scientists and domain scientists will focus their respective 
research agenda in relevant directions, clarify priorities, and provide data and experiences 
that will motivate further research questions.  Scientists today speak of a data deluge.  
Workflows could provide a much needed layer of cyberinfrastructure to move science 
swiftly through the path from data to knowledge to discoveries. 
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